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1. INTRODUCTION

The numerical simulation of axisymmetric vortex flows by means of particle methods
has been investigated in a previous paper [7]. Although axisymmetric flows are almost
impossible to reproduce in industrial or even experimental devices, they have been used
extensively as the basic model of many problems of paramount practical interest, such as
the vortex breakdown or the modelization of flows in turbomachinery.

In [7], two different methods were proposed for the simulation of diffusion. The first
one was based on the diffusion velocity concept, whereas the second was the particle
strength exchange (PSE) method extended to axisymmetric flows. In the absence of any
mathematical analysis, the design of the smoothing function was achieved by using the
Green function of the diffusion equation. There are many different ways to build a PSE
method for axisymmetric flows. One way should be to use a cylindrical mapping and a
Cartesian form for the smoothing function. However, the diffusion operator has changed in
the mapping, and boundary conditions have to be satisfied on the axis. Although it leads to
the introduction of a singular convection velocity, one possible solution to this problem is the
splitting method proposed by Martins and Ghoniem [4]. This difficulty has been overcome
by Martins and Ghoniem by means of an explicit integration of the corresponding term.

In this paper, a full PSE method has been obtained by deriving an integral form for the
complete radial diffusion operator. To achieve this goal, we start from a three-dimensional
formulation in Cartesian coordinates. The result is then expressed in cylindrical coordinates
and integrated in the azimuthal direction. Both cases of scalar and vectorial diffusion have
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been investigated using the general formulation introduced by Mas-Gallic [5]. The purpose
of this note is also to investigate further the derivation of the PSE method for these two
cases (Sections 3 and 4). There are basically two differences between scalar and vectorial
axisymmetric diffusion. First, the diffusion operators expressed in polar coordinates are
different, although they have the same expression in a two- or a three-dimensional Cartesian
coordinate system. Second, the boundary conditions are also different: The continuity of
a scalar field is ensured provided its normal derivative along the axis is zero, whereas a
nonaxial vector field has to be zero itself. It has been found that different methods can
be obtained depending on the insertion of the discretisation step which can be performed
before or after the integration step. More details will be provided in Section 5 below.

2. INTEGRAL SOLUTION OF THE DIFFUSION EQUATION

We start from the smooth particle approximationφε of a function which can be either a
vector field with only one nonzero azimuthal componentφ = φθ such as vorticityω or a
scalar functionφ:

φε(x) =
∫

V
φ(x′)Fε(|x′ − x|) dv(x′). (1)

In this equation,ε is the cutoff number, andFε is a 3-D radially symmetric regular function
of unit weight, whose limit asε→ 0 is the Dirac measure [2]. The diffusion operator
is applied to the funtionφ. We denoteλ the diffusion coefficient, and we start with the
representation of the diffusion operator in a three-dimensionnal space using an integral
approximation [5]:

∇ · (λ(x)∇φε) ≈
∫

V
(λ(x)+ λ(x′))(φ(x′)− φ(x))

×∇Fε(|x
′ − x|) · (x− x′)
|x′ − x|2 dv(x′). (2)

A second-order three-dimensional Gaussian smoothing function has been used hereafter.
Thank to this choice, we were able to derive a close form for the integral (2). We did not
investigate other cases, although it is probably possible to obtain similar results by means
of algebraic or any other kind of smoothing functions. One of the main advantages of the
Gaussian in that case is that it is the exact Green function for the three-dimensional diffusion
problem. This property will be used later on. We set

Fε(x) = 1

(πε2)3/2
exp

(
−x2

ε2

)
. (3)

The gradient ofF can be explicitely computed as

∇Fε(x) · x
x2

= − 2

ε2
Fε(x). (4)

Splitting (2) in two terms yields two integrals which have to be computed, namely,

h1(x) =
∫

V
φ(x′)Fε(|x′ − x|) dv(x′)

h2( x) =
∫

V
φ(x)Fε(|x′ − x|) dv(x′) = φ( x)

∫
V
Fε(x′ − x) dv(x′). (5)
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These integrals have been computed for two different situations:φ is a scalar, andφ is
a vector. In this last case it will be shown in Section 5 that two different alternatives exist,
leading to two equivalent discrete formulations. For convenience, the computation of the
different integrals will be carried out in a cylindrical coordinates system(r, z, θ).

3. PARTICLE APPROXIMATION OF THE DIFFUSION

OF AN AXISYMMETRIC SCALAR FIELD

In the case whereφ is a scalar field, it does not depend on the azimuthal coordinateθ . An
approximationφε for φ can be readily obtained by using the previously defined Gaussian
smoothing functionFε and the particle weight8 ' φδS, which is a discrete form for the
differentialφ drdz:

φε(r, z) =
∫

V
φ(r ′, z′)Fε(|x − x′|)r ′ dr ′ dz′ dθ

=
∫
S
φ(r ′, z′)

(∫
θ

Fε(|x − x′|)r ′ dθ
)

dr ′ dz′

=
∫
S
φ(r ′, z′)G0ε(r, z, r

′, z′) dr ′ dz′. (6)

This is the result of the integration in the plane (r, z) of Eq. (1). The termS is the semi-infinite
meridian plane and

G0ε(r, z, r
′, z′) = 2r ′√

πε3
exp
{− (r ′2+ r 2+ (z′ − z)2)/ε2

}
I0

(
2r ′r
ε2

)
, (7)

whereIi is the modified Bessel function ofi th order and with∫
S

r ′G0ε(r, z, r
′, z′) dr ′ dz′ = r. (8)

Relation (7) ensures zero flux across the axis( ∂φ
∂r |r=0 = 0), and the integral result for the

functionG0ε (Eq. (8)) ensures that the total mass is conserved. Discretising the surfaceS
using particles with8 ≈ φδS, we obtain the discrete form:

φε(r, z) =
∑

i

8iG0ε(r, z, ri , zi ). (9)

The diffusion operator can be computed as well by using a similar procedure. The first
integral h1(x) was evaluated in [7]. The second one can be computed accordingly,

∇ · (λ(r, z)∇φε(r, z)) = 4

ε2

∫
S

r ′λ̄{φ(r ′, z′)− φε(r, z)}H0ε(r, z, r
′, z′) dr ′ dz′, (10)

with λ̄ = (λ(r, z)+ λ(r ′, z′))/2 and we noteHi ε the function

Hi ε(r, z, r
′, z′) = 2√

πε3
exp[−(r 2+ r ′2+ (z− z′)2)/ε2] Ii (2rr ′/ε2). (11)
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Discretising(S) with particles8i with elementary surface(Si ) and assuming thatφ can be
approximated by a constant on the particles yield the following equation:

∇ · (λ∇φε) |(ri ,zi ) Si = 4

ε2

∑
j

r j
(λi + λ j )

2
{8 j Si −8i Sj }H0ε(ri , zi , r j , zj ). (12)

4. PARTICLE APPROXIMATION OF THE DIFFUSION

OF AN AXISYMMETRIC VECTOR FIELD

Similarly, in the case whereφ is the azimuthal component of the vector field:φ = φθ ,
we get

φε(r, z) =
∫

V
φ(r ′, z′) cos(θ)Fε(|x − x′|)r ′ dr ′ dz′ dθ

=
∫
S
φ(r ′, z′)

(∫
θ

cos(θ)Fε(|x − x′|)r ′ dθ
)

dr ′ dz′

=
∫
S
φ(r ′, z′)G1ε(r, z, r

′, z′) dr ′ dz′. (13)

The functionG1ε has been derived in order to satisfy the boundary conditions, that is, zero
on the axis. Thus we get the expression

G1ε(r, z, r
′, z′) = 2r ′√

πε3
exp{−(r ′2+ r 2+ (z′ − z)2)/ε2}I1

(
2rr ′

ε2

)
. (14)

Irrespective of the value ofε, we can verify that
∫
S r ′2G1ε(r, z, r ′, z′) dr ′ dz′ = r 2 which

ensures the preservation of the first momentum. The discrete form of Eq. (13) is

φε(r, z) =
∑

i

8iG1ε(r, z, ri , zi ). (15)

We turn now to the discretisation of the diffusion operator according to Eq. (2),

h2(r, z) =
∫
S

φ(r, z)

(πε2)3/2
exp[−(r 2+ r ′2+ (z− z′)2)/ε2] I0(2rr ′/ε2)2πr ′ dr ′ dz′. (16)

Finally, the diffusion operator applied to an axisymmetric vector field is

∇ · (λ(r, z)∇φε(r, z)) = 4

ε2

∫
S

r ′λ̄{φ(r ′, z′)H1ε(r, z, r
′, z′)

−φ(r, z)H0ε(r, z, r
′, z′)} dr ′ dz′. (17)

A particle discretisation for this expression can be obtained by using the previously defined
8 j particle weight,

∇ · (λ(r, z)∇φε(r, z)) = 4

ε2

∑
j

r j λ̄

{
8 jH1ε(r, z, r j , zj )−8Sj

S
H0ε(r, z, r j , zj )

}
. (18)
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The discrete form of the diffusion operator applied to particles is

Dφ = ∇ · (λ∇φε) |(ri ,zi ) Si

= 4

ε2

∑
j

r j
(λi + λ j )

2
{8 j SiH1ε(ri , zi , r j , zj )−8i SjH0ε(ri , zi , r j , zj )}. (19)

If φ is the azimuthal component of the vorticity this leads to the following particle strength
exchange (PSE) scheme forφ:

d8i

dt
= Dφ. (20)

In the midplane the total particle weight is not conserved,d
dt (
∑

i 8i ) < 0. This leak is
balanced with the flux ofφ throught the linez= 0. For a vorticity field, this is in accordance
with the generalised Kelvin theorem [1]. This method can be easily incorporated in a
complete Navier–Stokes algorithm using free particles. The velocity induced by a set of
vortex rings is evaluated by the desingularised vortex method proposed by Nitsche [6].

5. APPLICATION TO VORTEX FLOWS

In this section, the case of an incompressible unbounded vortex flow is considered. The
problem under consideration is the form of the PSE model and the necessity to account
explicitely for the vorticity diffusion flux across the axis. A straightforward application of
the algorithms of Section 4 enlightens this problem and brings some explanations on the
vorticity diffusion for axisymmetric flows. The vorticity fieldω = φθ satisfies the following
diffusion problem if we consider the case of uniform viscosity:

∂ω

∂t
= ν

(
∂2ω

∂r 2
+ ∂

2ω

∂z2
− ω

r 2
+ 1

r

∂ω

∂r

)
in [0,+∞[×]−∞,+∞[

ω = 0 for r = 0.

A numerical solution of which can be expressed, either using the previous expression

d0i

dt
= 4ν

ε2

∑
j

r j {0 j SiH1ε(ri , zi , r j , zj )− 0i SjH0ε(ri , zi , r j , zj )}, (21)

or according to the analysis of [7]

0i (t)=0i (0)
(
1− exp

(−r 2
i

/
(4νt)

))+∑
j

{r j0 j Si − ri0i Sj }H1
√

4νt (ri , zi , r j , zj ), (22)

where0 ≈ ∫Sω dr dz is the particle strength. The connection between these two expres-
sions can be derived from mathematical arguments although they correspond to two different
ways of derivation on a physical background. In order to establish the last formulation, we
have to consider the case of a uniform viscosity. The diffusion operator (Eq. (17)) is

ν1ωε(r, z) = 4ν

ε2

∫
S

r ′{ω(r ′, z′)H1ε(r, z, r
′, z′)− ω(r, z)H0ε(r, z, r

′, z′)} dr ′ dz′. (23)
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This equation can be expressed with the notations of Sections 2 and 4 using the functions
h1 andh2. We then have

ν1ωε(r, z) = 4ν

ε2
(h1(r, z)− h2(r, z)). (24)

We are interested in the functionh2 of this equation:

h2(r, z) = ω(r, z)
∫ +∞
−∞

1√
πε2

exp[−(z− z′)2/ε2] dz′

×
∫ +∞

0

2r ′

ε2
exp[−(r 2+ r ′2)/ε2] I0(2rr ′/ε2) dr ′. (25)

We apply to the second integral, which is only dependent inr , an integration by parts,∫ +∞
0

2r ′

ε2
exp[−(r 2+ r ′2)/ε2] I0(2rr ′/ε2) dr ′

= exp(−r 2/ε2)+
∫ +∞

0

2r

ε2
exp[−(r 2+ r ′2)/ε2] I1(2rr ′/ε2) dr ′. (26)

Substituting this result in Eq. (23) we obtain another expression for the diffusion operator,

ν1ωε(r, z) = −4νω(r, z)

ε2
exp(−r 2/ε2)

+ 4ν

ε2

∫
S
{r ′ω(r ′, z′)− rω(r, z)}H1ε(r, z, r

′, z′) dr ′ dz′. (27)

The discrete form of the previous equation using the particle approximation is

Dω = −4ν0i

ε2
exp
(− r 2

i

/
ε2
)+ 4ν

ε2

∑
j

{r j0 j Si − ri0i Sj }H1ε(ri , zi , r j , zj ). (28)

We integrate the transport equation (20) for the circulation attached to a particle using a
first-order scheme in time. By replacing the core radiusε by the core radius coming from the
solution of heat transfer theory (ε = √4νt) we obtain Eq. (22). This result can be obtained
in a different way by considering the different term of the diffusion process. A physical
interpretation of the basic form of the PSE method for a Gaussian regularisation function
has been provided in [3]. The application to axisymmetric flows is the result of two steps.
The first one consists of an integration inθ of the three-dimensional diffusion equations,
and the second is the reduction of the problem to a two-dimensional one in the meridian
plane. The two previous expressions correspond exactly to different orders in performing
these two steps.

From a numerical point of view, these two methods are not exactly equivalent because the
integration domain is theoretically infinite whereas the numerical domain is not. Therefore,
the evaluation of integral (25) is nothing more that an approximation of the sum of the
integral and the exponential term of Eq. (26). To evaluate the accuracy of the two methods,
the one-dimensional radial problem has been solved for different particle numbers. The
results are presented on Figs. 1 and 2. We plotted on Fig. 1 the local error on the vorticity
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FIG. 1. Numerical results of a pure one-dimensionnal axisymmetric diffusion using the two different discrete
form of the PSE method (Eqs. (21) and (28)). Evolution of the error of the vorticity along the r-axis for different
discretization attν/R2 = 0.4025 after 40 time steps. The cutoff numberε is fixed to 0.2 and the time step
1tν/R2 = 0.001.

field using the two previous formulations of the PSE for vorticity. The cutoff number and the
time step are fixed, and we found that the best result is obtained by solving Eq. (28) in which
the flux of vorticity on the axis is well approximated. The vorticity field is plotted on Fig. 2
to compare the analytical solution and the numerical results for different discretisations.

FIG. 2. Evolution of the vorticityω versusr/R. Comparaison between the two different discrete form of
the PSE method (Eqs. (21) and (28)) and the analytical result attν/R2 = 0.4025 after 40 time step. The other
parameters are the same as in Fig. 1.
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6. CONCLUSION

The numerical solution of a diffusion equation by means of particle method has been
performed according to two different discretisation schemes which are theoretically equiv-
alent. The two models differ essentially in the discretisation of the vorticity flux across the
axis. It has been observed that the method in which this flux is explicitely computed shows
better conservation properties.
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